Технологии Text Mining в социологическом анализе (на примере изучения представлений студентов о миссии современного вуза)
Научная статья
Аннотация
Литература
2. Hotho A., Nürnberger A., Paaß G. A Brief Survey of Text Mining // Journal for Language Technology and Computational Linguistics. 2005. Vol. 20, № 1. P. 19– 62. DOI 10.21248/jlcl.20.2005.68.
3. Isaeva E., Aldarova D. Text-Mining in Terms of Methodology and Development // Proceedings of 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). (Moscow, 26–29 January 2021). Moscow : IEEE, 2021. P. 413–416. DOI 10.1109/ElConRus51938.2021.9396437. EDN SECGLN.
4. Осочкин А. А., Фомин В. В., Флегонтов А. В. Метод частотно-морфологической классификации текстов // Программные продукты и системы. 2017. Т. 30, № 3. С. 478–486. DOI 10.15827/0236-235X.030.3.478-486. EDN ZDUXZD.
5. Macanovic A. Text mining for social science – The state and the future of computational text analysis in sociology // Social Science Research. 2022. Vol. 108. P. 1–16. DOI 10.1016/j.ssresearch.2022.102784. EDN SXELZJ.
6. Evans J. A., Aceves P. Machine Translation: Mining Text for Social Theory // Annual Review of Sociology. 2016. Vol. 42. P. 21–50. DOI 10.1146/annurevsoc-081715-074206.
7. Does counting emotion words on online social networks provide a window into people’s subjective experience of emotion? A case study on Facebook / E. Kross, P. Verduyn, M. Boyer [et al.] // Emotion. 2019. Vol. 19, № 1. P. 97–107. DOI 10.1037/emo0000416.
8. Karlgren J., Li R., Meyersson Milgrom E. M. Text mining for processing interview data in computational social science // arXiv : [сайт]. 28 Nov 2020. URL: https://arxiv.org/abs/2011.14037 (дата обращения: 26.10.2023). DOI 10.48550/arXiv.2011.14037.
9. Дудина В. И., Юдина Д. И. Извлекая мнения из сети Интернет: могут ли методы анализа текстов заменить опросы общественного мнения? // Мониторинг общественного мнения: Экономические и социальные перемены. 2017. № 5 (141). С. 63–78. DOI 10.14515/monitoring.2017.5.05. EDN VTHJMT.
10. Кольцова О. Ю., Маслинский К. А. Выявление тематической структуры российской блогосферы: автоматические методы анализа текстов // Социология: 4М. 2013. № 36. C. 113–139. EDN RCFOWJ.
11. Кашина М. А., Ткач С. Социология ценностей: опыт построения таксономии путём использования технологии анализа естественного языка // Цифровая социология. 2023. Т. 6, № 1. С. 48–58. DOI 10.26425/2658-347X-2023-6-1-4858. EDN YROQXD.
12. Оценка соответствия приоритетов стратегического развития регионов их отраслевой специализации на основе Text Mining / Е. В. Козоногова, Ю. В. Дубровская, М. Р. Русинова, П. В. Иванов // Вопросы государственного и муниципального управления. 2022. № 2. С. 106–133. DOI 10.17323/19995431-2022-0-2-106-133. EDN JRFOUQ.
13. Kotsiantis S. B., Kanellopoulos D., Pintelas P. E. Data Preprocessing for Supervised Leaning // International Journal of Computer and Information Engineering. 2007. Vol. 1, № 12. P. 4091–4096.
14. Bird S., Klein E., Loper E. Natural language processing with Python. Sebastopol : O’Reilly Media, 2009. 479 p. ISBN 978-0-596-51649-9.
15. Воронцов К. В. Вероятностное тематическое моделирование. 2013. 28 с. URL: https://mathprofi.com/uploads/files/3314_f_41_veroyatnostnoe-tematicheskoe-modelirovanie.-k.v.voroncov-2013g.pdf?key=19789ad13cac2399925acb68b1e18d8e/ (дата обращения: 26.10.2023).
16. Оберемко О. А. К типологии открытых вопросов // Мониторинг общественного мнения: Экономические и социальные перемены. 2018. № 4 (146). С. 97–108. DOI 10.14515/monitoring.2018.4.06. EDN UZQQIE.
17. Ненько А. Е., Недосека Е. В., Галактионова А. А. Возможности семантического анализа ключевых биграмм для исследования дискурса соседского онлайн сообщества // International Journal of Open Information Technologies. 2021. Т. 9, № 12. С. 111–118. DOI 10.25559/INJOIT.2307-8162.09.202112.111-118. EDN QTJRPZ.
18. Хохлова М. В. Статистический подход применительно к исследованию сочетаемости: от мер ассоциации к машинному обучению // Структурная и прикладная лингвистика: межвуз. сб. / Отв. ред. И. С. Николаев. СПб : Изд-во С.-Петерб. ун-та, 2019. Вып. 13. С. 106–122. EDN GKFUJY.
19. Хохлова М. В. К вопросу о сходстве мер ассоциации применительно к задаче автоматического извлечения глагольных коллокаций // Компьютерная лингвистика и вычислительные онтологии. 2019. № 3. С. 9–18. DOI 10.17586/25419781-2019-3-9-18. EDN LCONAI.
20. Kormacheva D., Pivovarova L., Kopotev M. Evaluation of collocation extraction methods for the Russian language // Quantitative approaches to the Russian language. New York : Routledge, 2018. P. 137–157. DOI 10.4324/9781315105048-7.
21. Рассел М., Классен М. Data Mining. 3-е изд. СПб. : Питер, 2020. 464 с. ISBN 978-5-4461-1246-3.
22. Кирина М. А. Сравнение тематических моделей на основе LDA, STM и NMF для качественного анализа русской художественной прозы малой формы // Вестник НГУ. Серия: Лингвистика и межкультурная коммуникация. 2022. Т. 20, № 2. С. 93–109. DOI 10.25205/1818-7935-2022-202-93-109. EDN MWZRKH.
23. Тематическое моделирование в контексте медицинских текстов / С. А. Землянский, С. В. Аксёнов, И. А. Лызин, О. Г. Берестнева // Доклады ТУСУР. 2021. Т. 24, № 4. С. 58–64. DOI 10.21293/1818-0442-2021-24-4-58-64. EDN PWQTGR.
24. Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование. 2012. Т. 4, № 4. С. 693–706. EDN PWNZXV.
25. Pääkkönen J., Ylikoski P. Humanistic interpretation and machine learning // Synthese. 2021. Vol. 199, № 1. P. 1461–1497. DOI 10.1007/s11229-02002806-w. EDN CDPQZP.
26. Луков В. А. Тезаурусная социология : в 4 т. М. : Изд-во Моск. гуманит. ун-та, 2018. Т. 1. 608 с. ISBN 978-5-907017-45-0.

Поступила: 12.11.2023
Опубликована: 24.03.2024